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Recurrent neural networks

• Recurrent neural networks (RNNs) can process variable length 
sequences of inputs, such as sequences of letters or words. 

• For any input sequence, a recurrent neural network is “unrolled” 
into a deep feedforward network. 
Depth is proportional to the length of the sequence. 

• In contrast to the situation with deep feedforward networks, all 
parameters are shared across all positions of the sequence.
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RNN, unrolled view
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Properties of recurrent neural networks

• e parameters of the model are shared across all positions. 
e number of parameters does not grow with the sequence length. 

• e output can be influenced by the entire input seen so far. 
Contrast this with the locality constraint of CNNs. 

• e hidden state is a “lossy summary” of the input sequence. 
Hopefully, it will encode useful information for the task at hand.



Training recurrent neural networks

• Unrolled recurrent neural networks are just feedforward 
networks, and can therefore be trained using backpropagation. 
No specialised algorithm necessary! 

• is way of training recurrent neural networks is called 
backpropagation through time. 

• Shared weights are updated by summing over the gradients 
computed for each position.



Common usage patterns for RNNs

encoder
example: text classifier

transducer
example: language model

decoder
example: chatbot



Extensions of the basic RNN architecture

• Stacked RNNs are RNNs with several layers, where the outputs 
of one layer become the inputs of the next. 

• Bidirectional RNNs combine one RNN that moves forward 
through the input with another RNN that moves backward. 
outputs at each position are concatenated


